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The vertical temperature structure of homogeneous stratified shear turbulence is in-
vestigated using new rapid vertical temperature measurements in a thermally stratified
wind tunnel. Six cases of gradient Richardson number, Rig = N2/(dŪ/dz)2, where N
is the Brunt–Väisälä frequency (N2 = (g/T̄ )dT̄ /dz), are studied, spanning a range
0.015 6 Rig 6 0.5. Three- to five-hundred high-resolution temperature profiles are
made for several streamwise stations for each case of Rig . These measurements are
supplemented with standard fixed-point, Eulerian measurements of streamwise and
vertical velocity fluctuations and temperature fluctuations and with an eight-point
vertical rake of temperature probes using standard hot-wire and cold-wire techniques.
Vertical profiles uniquely enable the computation of available potential energy (APE),
Thorpe scales (LTh), and the diapycnal flux (φd), as well as one-dimensional verti-
cal wavenumber temperature spectra. These quantities are compared with Eulerian
measurements of turbulent kinetic energy (KE), potential energy (PE), and buoyancy
flux. It is found that the one-dimensional vertical wavenumber temperature spectrum
contains more energy at smaller scales compared to the horizontal spectrum, owing
in part to shear distortion, which leads to larger mean square vertical gradients
of fluctuating temperature as compared to mean square horizontal gradients. The
combination of shear and stratification, especially for cases where the turbulence
decays with evolution, accelerates the evolution toward small-scale anisotropy com-
pared to just shear or just stratification. It is found that in highly stratified cases,
the diapycnal flux can persist after buoyancy flux has collapsed to negligible values,
indicating enhanced heat transfer without turbulent mixing. For low Rig , large-scale
vertical advection creates both high local temperature gradients and regions of static
instability. Associated with the regions of instability is APE, which grows relative to
KE for the least stratified cases. For high Rig , the turbulence evolves to a wavelike
state, containing some counter gradient fluxes and unstable patches. This wavelike
state has higher heat flux efficiency than the more turbulent states owing to the low
dissipation but relatively high diapycnal flux.

1. Introduction
1.1. Motivation

The vertical structure of stratified turbulent flows has been investigated for many
years in the ocean by temperature profiles and microstructure studies. Similar studies
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have been made in atmospheric flows. The vertical structure reveals the overall
anisotropic properties of the geophysical turbulence and emphasizes the development
of high-gradient regions and unstable regions.

Although in situ investigations of geophysical turbulence are required to have
any measurement of the mixing in the ocean or atmosphere, the utility of these
measurements is still not perfectly understood. This has led to the development of
new theoretical frameworks, such as background potential energy (Winters et al. 1995)
or isopycnal coordinate systems (Gregg 1987), to better understand the information
contained in microstructure measurements. Recent numerical investigations have
tried to use some of these ideas to better understand the energetics associated with a
potential energy field (Winters & D’Asaro 1994; Staquet 2000), but a significant gap
still exists in the understanding of how to use these measurements to determine the
required quantities. An example of this difficulty is the reliance on the Osborn–Cox
model (Osborn & Cox 1972) which uses dissipation measurements to measure the
buoyancy flux indirectly. This model uses the assumption that the turbulence is in a
steady state. However, without knowledge of the age of the turbulence (time since
the initial overturn) or in cases where significant velocity shear exists, the steady-state
assumption is inherently invalid.

Other more fundamental difficulties derive from the notion of a background density
profile, as compared to a mean density profile. Winters et al. (1995) argue that the
background density profile, the density profile obtained by adiabatic reordering of
a density field to its minimum potential energy state, is changed, not by buoyancy
fluxes, which are reversible, but by irreversible diapycnal fluxes. Therefore, a direct
measure of the changes in large water masses is best measured directly through
diapycnal fluxes. Given this argument, we might question the utility of measuring
the buoyancy flux, an indirect measure of the actual irreversible mixing, versus the
diapycnal flux, for the purpose of measuring diffusivities. Some indications of the
problems in the calculating of diffusivities using the Osborn–Cox model are discussed
by Davis (1994) who notes that the diffusivities predicted by large-scale measurements
are 10 times greater than the measured diffusivities using the Osborn–Cox model and
microstructure measurements.

The lack of significant experimental and numerical investigations directly into the
vertical structure, especially in homogeneous turbulence, is a primary motivation for
this study. Fundamentally, we would like to compare the information contained in
the vertical measurements to the standard fixed-point measurements usually used
in laboratory studies. Quantities such as vertical mean square gradients, vertical
one-dimensional spectra, and vertical integral scales are all fundamental to a thor-
ough understanding of these anisotropic flows. Additionally, new information can
be obtained about the properties of microstructure measurements by evaulating the
techniques used for microstructure measurements in a laboratory environment.

1.2. Previous investigations

The use of vertical measurements in experimental studies extends back many years
in inhomogeneous flows, and has elucidated the tendency for generating high vertical
density gradients and the final collapse of the turbulence into narrow mixed layers.
Vertical density measurements have been extensively used for studying stratified
mixing layers (Thorpe 1973). More recently, Taylor (1992) investigated breaking events
in an internal wave field using vertical sampling. Using particle image velocimetry,
Chomaz, Bonneton & Hopfinger (1993) studied the breakdown into different layers
of a coherent sphere wake in a stratified fluid.
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The collapse of three-dimensional homogeneous turbulence has been studied for
specific cases in which the forcing is predominately aligned in the horizontal. Fin-
cham, Maxworthy & Spedding (1996) investigated the long-time evolution of quasi-
two-dimensional turbulence generated by vertically aligned bars passed through a
stratified fluid. Park, Whitehead & Gnanadaskian (1994) similarly used a vertical rod
to stir a stratified fluid for studying the evolution toward a layered density struc-
ture. Numerical investigations of unsheared homogeneous stratified turbulence have
attempted to quantify the evolution toward a layered structure by using a Craya–
Herring decomposition in which vortical modes and wave modes can be explicitly
separated. Métais & Herring (1989), and later Staquet & Godeferd (1998) have shown
that the vortical modes tend to dominate the flow energetically for long evolution.
The interaction of these vortical modes at different heights is envisaged as a source of
large vertical gradients of both velocity and density (Fincham et al. 1996). Godeferd
& Cambon (1994) show that triadic interaction with vortical modes results in an
irreversible anisotropy.

Experimental investigations which study the evolution from fully three-dimensional
turbulence to the layered structure have not yet been carried out, owing to the difficulty
of the experiment. However, Thoroddsen (1991) found, for evolution times Nt/2π ≈ 1,
significant anisotropy in small-scale structures (N is the Brunt–Väisälä frequency, and
t is time). Itsweire (1984) successfully measured vertical profiles of density in a salt-
stratified water tunnel, but only used these measurements to compare the Thorpe
scales to other scales of the turbulence.

Investigations into the vertical structure of sheared, stratified turbulence are even
less numerous. For shear flows, it is expected that the small scales of the velocity
field will be isotropic for large enough Reynolds numbers, and that the large scales
might be distorted by the mean shear (Tavoularis & Corrsin 1981a). However, some
surprising phenomena have been found at small scales, even for high Reynolds
numbers, such as counter gradient fluxes, where small buoyant parcels of fluid return
to their neutral positions. This effect is thought to be especially important for large
Prandtl or Schmidt numbers, in which diffusion of density is relatively slow compared
to viscous diffusion. Gerz, Howell & Mahrt (1994) and Gerz & Schumann (1996) have
investigated the mechanism for density microfronts, in which local regions of high-
density gradients exist, postulating that horseshoe-vortex pairs are responsible for
these structures. They theorize that two oppositely oriented horseshoe vortices advect
fluid through their own legs, creating high gradients where the advected fluid meets.

Some indications are that for truly homogeneous turbulence, the details are not
important for parameterizing the mixing by the turbulence at low enough Rig . Holt,
Koseff & Ferziger (1992), Jacobitz, Sarkar & Van Atta (1997) and others have
found a kind of self-similar evolution characterized by exponential energy evolution
and constant mixing efficiencies. For flows in which homogeneity is not certain or
when the ambient conditions are not known, as is the case in ocean microstructure
studies (Dillon 1982; Gregg 1987), a self-similar framework is not necessarily helpful.
Instead, one must obtain detailed measurements of the events which make up mixing
in stratified flows in controlled laboratory environments to better understand the
ocean processes. This type of investigation is comparable to investigations of coherent
structures in jets and mixing layers where coherent structures control the dominant
mixing events.

The plan of this paper is as follows. The experimental set-up is described in § 2.
The results are presented in § 3. The results are discussed and some conclusions are
explained in § 4. General conclusions are presented in § 5.
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Figure 1. Schematic of the stratified shear wind tunnel. Mean velocity shear is negative, so high
speeds are on the bottom. The flow straightener ensures that the flow passing through the 2.54 cm
mesh grid is devoid of large scales originating at the splitter plates.

2. Experimental set-up
2.1. Tunnel

A 10-layer thermally stratified wind tunnel generates the mean flow used in this
investigation. This tunnel was initially used by Piccirillo & Van Atta (1997) and is
described in detail in Piccirillo & Van Atta (1996). The mean flow is generated in
each layer independently, by controlling individual blowers and heaters in each layer.
The flow within the different layers merges together about 80 cm upstream of the
test section. A diagram of the tunnel is shown in figure 1. The tunnel test section
dimensions are 5 m long by 60 cm wide by 30 cm high.

Some modifications of the tunnel have been carried out to improve its controllabil-
ity, homogeneity, and the range of mean flows that can be generated. The improve-
ments include a new inlet design which takes flow from each blower into individual
layers. The new inlet minimizes drag and helps controllability. With the new inlets, a
new large blower has been installed to power the lowest layer. This new blower has
enabled mean shear rates of as high as 9.5 s−1, which is about twice as large as the
shear rates used in Piccirillo & Van Atta (1997). Also, having higher flow rates on
the lowest layer enables better homogeneity by minimizing boundary-layer effects. An
aluminium honeycomb flow straightener has also been added, placed about 10 cm up-
stream from the test section, to eliminate the coherent structures which develop at the
shear layers where pairs of layers merge. Though the honeycomb greatly improved the
homogeneity of the flow, it also generally lowered the microscale Reynolds number.

2.2. Mean flow properties

Six cases of gradient Richardson number, Rig = 0.015, 0.055, 0.095, 0.135, 0.25, 0.5,
were studied. For each case, a 2.54 cm biplanar grid initiated the turbulence at the be-
ginning of the test section. The initial microscale Reynolds number, Reλ = qλ/ν, where

q is the total r.m.s turbulent velocity, λ is the Taylor microscale, λ = (u2/(∂u/∂x)2)1/2,
and ν is the kinematic viscosity, was about 30 for each case. Depending on the flow
conditions, Reλ might grow or decay from that value. For Rig = 0.015, Reλ ≈ 90 by the
end of the evolution. In contrast, for Rig = 0.5, Reλ ≈ 20 by the end of the evolution.

The mean profiles of velocity and temperature were measured at 7 streamwise
stations for every case using a Pitot tube and slow response platinum resistance
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Figure 2. Mean profile evolution of velocity and temperature for Rig = 0.015. Mixing both
straightens the profiles and flattens the gradients. Some boundary effects are evident, but the central
15 cm is unaffected.

probe. The evolution of these profiles is shown for one case in figure 2. The tunnel
floor and roof were set to expand slightly to account for boundary-layer growth.
However, the mixing of momentum and heat by the turbulence produces a slow
evolution of the mean gradient of velocity and temperature. As a result, Rig evolves,
since it depends inversely on the square of the velocity gradient, but linearly on the
temperature gradient. Local values of velocity gradient and temperature gradient were
used for every measurement station. These values were found by fitting a low-order
polynomial curve to the measured mean gradients at the seven stations and then
calculating local values using the fitted curve. Note that the different cases will be
referred to by their initial values of Rig , thereby indicating the relative stability of the
flow, but local values Rig are used for all computations.

2.3. Vertical measurements

The vertical measurements of temperature comprise the core measurement used in
this study. Much of the experimental detail can be found in Keller & Van Atta (2000),
in which the vertical traverse is explained and many other details are provided. Here,
we will focus on the most relevant details only.

The vertical measurements are made with a resolution of about 0.085 mm over the
span of the tunnel, from bottom to top. The measurements are made at equally spaced
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Figure 3. Examples of spectral correction for the noise tail exist in some measurements. The choice
of the correction is not critical, since only 10% of the contribution is in this tail region. (a) Original
and corrected power spectrum; (b) original and corrected dissipation spectrum.

intervals using an encoder to trigger measurements. This spatial resolution is much
finer than actually needed, and therefore the measurements are subsequently digitally
filtered to more appropriate resolutions. The probe is accelerated from rest to about
13 m s−1 and then back to rest within the confines of the tunnel, about 36 cm. Only
vertical measurements in the central 15 cm of the tunnel, where the probe velocity
is never less than 12 m s−1, are used for calculations. The total time of measurement
for each vertical sample is about 0.01 s, which gives effectively instantaneous profiles.
For all but one case, 500 profiles were taken at each station (for Rig = 0.25, only 300
profiles were measured). The voltages were digitized with 16-bit precision, which is
judged to be a minimum for this type of measurement.

The temperature measurements are made using standard cold-wire methods, as
described by Haugdahl & Lienhard (1988). The response of the cold-wire bridge
is estimated to be about 30 kHz, well above the thermal response of the cold wire
itself. The cold-wire probe is a modified Dantec 55P1 single-wire probe, where a
platinum wire is soldered to the prongs. For most measurements, the platinum wire
was 0.625 µm diameter, with a length of 0.7 mm. The response of this size wire is
estimated to be about 6.5 kHz (LaRue, Deaton & Gibson 1975) at 10 m s−1, which
corresponds to a spatial resolution of about 1.5 mm. Kolmogorov scales are estimated
to be no less than 0.5 mm, for these flows, so 1.5 mm resolution should be sufficient.
To test this issue, measurements were also made with 0.4 mm long, 0.25 µm diameter
wires for Rig = 0.25, 0.135, 0.5. No significant differences were found in measured
quantities, such as mean square gradients.

Some noise was evident at the very smallest scales in the highest stratification case
(Rig = 0.5). This noise, which resembled intermittent spikes, was probably due to the
electromagnetic noise emitted from the servo motor which powered the traverse. A
comparison of vertical profiles from thick and thin wires showed that the spikes were
made negligible by using the thinner wires, probably because the signal-to-noise ratio
of the thinner wires is greater than that of the thicker wires. The thin wires did have
some other high-frequency noise due to wire vibration which contributed additional
noise. However, in all cases, the noise corrupted signals at scales much smaller than
the peak of the dissipation spectrum. As a result of the noise problems, measurement
for Rig = 0.5 were made using the thick wire (0.625 µm) for x/M = 30, 54, 78 and
using the thin wire 0.25 µm for x/M = 102, 126, 150, 174. For all other measurements,
the 0.625 µm wires were used.

In order to compute estimates of the mean square vertical temperature gradients
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from vertical wavenumber spectra in which the dissipation spectrum was corrupted
by some noise, the noise in the spectrum was removed by fitting a curve with the
form exp (−k2

z ) to the smooth portion of the curve, and extended to small scales. This
correction, illustrated in figure 3, was only used for the measurement of mean square
gradients for Rig = 0.5 and the thin wire (x/M = 102, 126, 150, 174). The shape of
the correction curve compared favourably with the shape of spectra where no noise
was evident. In practice, owing to the low energy in this portion of the spectrum, the
shape of the correction is not critical, and any errors are probably smaller than other
experimental errors.

For the calculation of other quantities, such as Thorpe scales or APE, directly from
the vertical profiles, the profiles are smoothed first using a low-pass filter with a cutoff
which matches the point at which the spectrum falls off significantly.

2.4. Standard measurements

Standard X-wire and cold-wire measurements are made at several streamwise stations
(with spacing of 15–30 cm). The X-wire and cold wire are placed close together, with
cold wire aligned vertically. The X-wire, aligned for measurement of streamwise
and vertical velocity, is a Dantec 55P11 probe, with wire length 1.25 mm. The cold
wire is 0.625 µm diameter of length 0.7 mm, as described above. The X-wires are
powered by an AN2000 anemometer by AAlabs. At each streamwise station, 1 024 000
simultaneous measurements at 5 kHz are made of the three voltages, which are
subsequently converted to two velocities and one temperature via calibration laws.
The calibration laws used to calculate velocity are derived by Lienhard (1988), with
some modifications as detailed in Keller (1999). The cold wire has a linear calibration
law. Calibration constants for each run are obtained using an external calibration jet in
which the velocities and temperatures are varied to span the necessary range. Typical
error in the calibration law is about 0.1%, based on the calibration measurements.
Additional errors can be expected in the turbulence measurements owing to such
complications as mean velocity gradient and limited spatial resolution relative to the
small scales of the turbulence.

2.5. Rake measurements

The cold-wire rake consists of a vertical array of 8 cold-wire probes separated by
6.35 mm. 1 024 000 simultaneous measurements at 5 kHz are taken at 15 streamwise
stations. The rake measurements will primarily be used for visualization purposes,
but such measurements can also be used for direct calculation of two-dimensional
autocorrelations and two-dimensional power spectra. The rake measurements are
converted into temperature isocontour plots using Tecplot.

3. Results
3.1. Turbulence characteristics

Some turbulence characteristics of the flows are presented here, as they represent the
types of flow to be studied with vertical profiles.

The velocities are decomposed into a mean Ū, and fluctuating part, (u, v, w), with
mean velocity gradient, S = dŪ/dz, where the overbar indicates a mean quantity.
Similarly, the temperature is decomposed into a mean T̄ and fluctuation θ, with mean
temperature gradient, ST = dT̄ /dz. Figure 4 shows the evolution of turbulent kinetic
energy, KE, and turbulent potential energy, PE, for all the cases. These quantities are
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Figure 4. Evolution of turbulent kinetic and potential energies for all the cases. (a) Evolution of
turbulent kinetic energy; (b) evolution of turbulent potential energy.

defined as

KE = 1
2
(u2 + v2 + w2), (3.1)

≈ 1
2
(2u2 + w2), (3.2)

PE = 1
2
N2L2

t , (3.3)

where an approximation for KE is used, given only u, and w are available. Lt =
(θ2/S2

T )1/2 is the overturn scale. The equation for potential energy is a linearized
version that is exact for linear internal waves (Holliday & McIntyre 1981). The
evolution equations for these quantities can be found in Rohr et al. (1988), Holt
et al. (1992), Jacobitz et al. (1997), and Piccirillo & Van Atta (1997), as well as
others. As is shown in all of these references, for Rig < Ricr , where Ricr is a critical
gradient Richardson number, the turbulent energies grow with evolution because net
production is greater than both dissipation and buoyancy losses. For Rig > Ricr , the
turbulence decays, presumably until some collapse of turbulence results in a new state
of the turbulence. As shown in Keller (1999), the ratio KE/PE achieves a constant
value, indicating either both quantities grow or both decay. As the turbulent energies
grow, Reλ also grows, whereas if the turbulence decays, Reλ also decays.
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Figure 5. Two different isocontour plots of temperature at x/M = 150 for Rig = 0.015. Note
the large temperature gradient regions aligned along the mean strain direction. The steps in the
gradients are due to the limited resolution of the rake. Dark colouring indicates cool fluid, light
colouring indicates warm fluid.

3.2. Rake visualizations

Isocontour plots of the temperature field from the rake measurements are used to
visualize the temperature field. The plots are made with physically accurate propor-
tions in which spatial coordinates are found by using a frozen flow approximation to
convert from time steps to spatial steps using the local mean velocity. Starting from
the middle of the time series, defined as x = 0, spatial increments are defined both
forward and backward so the distortion occurs in both directions. The edges of the
plots provide a measure of the total distortion, as indicated by the slope of the edge
of the plot. The flow direction is from negative to positive x, and the flow velocity is
highest at the bottom. Shading is used to label warm and cold fluid, where dark is
cool and light is warm. The steps in the isocontours, often visible along high-gradient
regions, are due to the limited resolution of the cold-wire rake, which has just eight
points. Two different examples are shown for each of three cases, Rig = 0.015, 0.095,
and 0.5.

Rig = 0.015

Figure 5 shows isocontours for Rig = 0.015 at x/M = 150 for two different
examples. These figures show the typical structures found in flows where Rig < Ricr .
Strong, stable gradient regions, which are long (at least 4 cm in these cases) are
the strongest gradients in the flow. These are the microfronts discussed by Gerz
& Schumann (1996). An examination of the plots indicates that these fronts are
associated with parcels of fluid which were recently advected away from their neutral
positions. As shown in these figures, large parcels of fluid which are cooler than the
ambient have high-gradient regions to their right, or downstream, and large parcels
which are warmer than the surrounding fluid have high-gradient regions on their
upstream side.

This phenomenology is similar to that described in Tavoularis & Corrsin (1981a)
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Figure 6. Two isocontour plots of temperature at x/M = 150 for Rig = 0.095. Note the high-gradient
regions tend to curve toward horizontal, and isothermal regions are just above or below these
high-gradient regions. See figure 5 for additional information.

and later in Budwig, Tavoularis & Corrsin (1985) in which it is postulated that parcels
that are advected upward carry excess momentum compared to the surrounding fluid,
creating a convergence zone on the front of the lump which increases the existing
temperature gradient. Similarly, parcels that are advected downward, away from their
neutral position, should have a deficit in momentum relative to the surrounding
fluid, creating a convergence zone on the upstream side of the parcel. A physically
reasonable way to describe these structures would be as pulsed jets exhausting into
a crossflow, such that, initially, the gradient would be aligned almost vertically, but,
eventually, the high gradient region becomes turned toward horizontal and strained
beyond recognition.

Rig = 0.095

Figure 6 shows isocontour plots for stronger stratification. The contours are similar
to the less stratified case, but the angle of the high-gradient region is less vertical.
As cold fluid is advected upward, kinetic energy is converted to potential energy,
and the vertical momentum of the parcel decreases. This results in the high-gradient
regions turning toward horizontal more quickly than in the less stratified case. Such
a mechanism should therefore result in larger vertical gradients, since the turning
toward horizontal happens before the gradient is too distorted and before diffusion
has acted. Figure 6(a) appears to show this tendency, where the tip of the cool
lump, at x = −1.0 cm, could be falling because of buoyant forces. Without velocity
measurements, we cannot be sure of the exact dynamics.

Rig = 0.5

The isocontour plots for Rig = 0.5 (figure 7) are in sharp contrast to the other
two cases. No high-gradient regions are evident, and few regions of static instability
are visible. These images could be considered wavelike, based on the limited slope of
the isopycnals and the lack of unstable regions. To conclude that this is really waves
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Figure 7. Two isocontour temperature plots at x/M = 150 for Rig = 0.5. The contours are
distinctly wavelike, but with some overturned regions. See figure 5 for additional information.

would require measurements in both space and time to be able to track the motion
of a line of constant phase. For waves in which the frequency is no greater than
N, or period of 2π/N, waves in this flow will have only propagated at most half a
wavelength, since the travel time in the tunnel is about 2 s. No evidence of waves is
found from single-point measurements of the cross-spectrum between vertical velocity
and temperature. In this case, the phase spectrum between these two variables would
be ±90◦.

3.3. Two-dimensional autocorrelations

The visualizations discussed in the previous section are helpful for obtaining an un-
derstanding of the physical mechanisms, but a more quantitative result is preferred.
Toward this end, two-dimensional autocorrelations of temperature have been calcu-
lated. The autocorrelation of temperature fluctuations is shown in figure 8(a, c, e) for
three cases at the final streamwise station. Note that the limited vertical resolution
causes some bumps in the curves. For Rig = 0.015, the isocontours strongly resemble
the results in Tavoularis & Corrsin (1981a) for passively stratified shear flow. They
found an angle of inclination of the major axis of a fitted ellipse to be about 25◦.
The angle of the contours in figure 8(a) is estimated to be about 35◦, similar to the
reported angle of inclined coherent horseshoe vortices (Gerz et al. 1994). Increasing
stratification limits the vertical scales, causing the major axis to incline at smaller
angles, as seen in these autocorrelation plots. At Rig = 0.095, the angle is about 31◦.
For Rig = 0.5, the angle is about 20◦.

A measure of the structure of high-gradient regions is the autocorrelation of
the streamwise gradients, shown in figure 8(b, d, f). Owing to the limited vertical
resolution of the rake, vertical gradients cannot be measured, but, as is evident in
the isocontour plots, high vertical gradients are probably highly correlated with high
streamwise gradients. The streamwise gradients are calculated using 6th-order finite
differences. For Rig = 0.015, the autocorrelation of the streamwise gradient shows
that large streamwise gradients occur on a vertically aligned front for small vertical
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Figure 8. Isocontours of the autocorrelations of temperature fluctuations and of streamwise
temperature gradients at x/M = 180. Isocontours, with contour labels, are plotted for values from
0 to 1. (a, c, e) Autocorrelation of temperature fluctuations for Rig = 0.015, 0.095, 0.5, respectively;
(b, d, f) autocorrelation of streamwise gradients for Rig = 0.015, 0.095, 0.5, respectively.

scales. This structure is due to the short timescale of vertical advection relative to the
shear timescale which results in the formation of large horizontal gradients before
significant lateral advection has occurred. This description is consistent with the
mechanism described in Tavoularis & Corrsin (1981a) and Budwig et al. (1985). With
increasing stratification, vertical advection is inhibited by buoyancy, slowing down
vertical advection. As the differential velocity has time to act, high-gradient regions
are advected foward or backward and turned relative to the initial event. This aligns
the gradients with the mean strain direction, at 45◦. The difference in alignment of
the gradients compared to the fluctuations implies that the structure of the gradient
field is dependent on the mean strain field. This observation can be contrasted to the
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Figure 9. Examples of vertical profiles for three different cases of Rig . Primary features include large
stable gradients, weak unstable gradients, and isothermal regions. Note the change of temperature
scales and different mean temperature gradients. (a) Rig = 0.015, dT̄ /dz = 38 k m−1; (b) Rig = 0.095,

dT̄ /dz = 163 k m−1; (c) Rig = 0.5, dT̄ /dz = 224 k m−1.

study by Gerz & Schumann (1996) who theorize that the large gradients should lie
parallel to the horseshoe vortices, at 35◦. The differences in the results could be due
to different flow conditions.

3.4. Vertical temperature profiles

Vertical temperature profiles for one station are shown for Rig = 0.015, 0.135, and 0.5
in figure 9. An examination of these profiles shows regions of static instability and
regions of high stable gradient. The large stable gradients are greater in magnitude
than the unstable gradients and correspond to the large gradients visible in the rake
measurements above. Typically, just above or below the stable gradient is a region of
roughly constant temperature, over a scale of 1 cm. These regions correspond to the
advected parcels visible in the rake measurements.

A diagram of how the vertical profiles correspond to the overall structure found in
the rake measurements is shown in figure 10 for a cool parcel advected upward. As
illustrated in the figure, stable gradients, uniform temperature lumps, and unstable
regions are all direct results of vertical advection events. The direction of the advection
determines where, relative to the advected parcel, the high-gradient region and the
unstable region occur. For a cold parcel advected upward, the high stable gradient
region is on the upper edge of the parcel and the unstable region is on the opposite
side of the parcel. A warm parcel advected downward has the opposite orientation.

The generation of large vertical gradients produces a skewness of the vertical
fluctuating temperature gradient of about 1.1, consistent for all the cases. This
skewness is evident in the probability density function (PDF) of the fluctuating
vertical temperature gradient shown in figure 11, where

α

(
∂θ

∂z

)
=

(∂θ/∂z)− (∂θ/∂z)(
∂θ/∂z

)′ . (3.4)
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Figure 10. Schematic of how vertically advected parcels at large scales create high gradients and
unstable regions in a mean flow with dŪ/dz < 0 and flow from left to right. A vertically advected
lump is pushed back over warmer fluid by the mean velocity gradient as a convergence zone
forms on the downstream side of the parcel because of the excess momentum carried by the parcel
relative to the fluid around it. For downwardly advected parcels, the same mechanism results in a
convergence zone on the upstream side of the lump and a reversed temperature profile.
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Figure 11. PDF of the fluctuating vertical temperature gradient. The asymmetry of the curve
indicates a positive skewness. This curve is typical for all the cases and streamwise stations.
x/M = 30; Rig = 0.015.

The asymmetry of the PDF implies a positive skewness. Note the exponential tails of
the PDF. Thoroddsen (1991) reports skewness measures of the vertical temperature
gradient which are initially about 1.0, but decay to about 0.4. The larger values found
in the present study for sheared stratified turbulence are probably due to the presence
of shear. Similar to Thoroddsen, the PDF of θ is Gaussian.

3.5. Vertical wavenumber spectra and mean-square gradients

Vertical wavenumber spectra are calculated from the vertical profiles by computing
a spectrum for each profile and averaging over all profiles at a station. The spectrum
for each profile is calculated relative to a linear least-squares fit through the data.
This method is used instead of the usual definition, as a fluctuation relative to the
mean gradient, because it was found that significant energy was contained in vertical
scales larger than the measurement length. By using a local reference, the large scales
are effectively high-pass filtered without allowing the energy from these large scales
to alias into the smaller scales. The present method does not change the small scales,
but the integral scale based on this spectrum probably does not reflect the overall
vertical integral scale. It is arguable, however, that this spectrum does reflect the
largest turbulent scales.
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Figure 12. Horizontal and vertical wavenumber temperature spectra are compared at x/M = 150
for Rig = 0.135. This example was chosen to illustrate the differences in the spectra. The vertical
wavenumber spectrum spans a narrower band of scales than the horizontal wavenumber spectrum,
and therefore must have more energy at small scales.

The vertical wavenumber spectrum for one case at one station is compared to
the local horizontal spectrum calculated from fixed-point measurements and using
frozen-flow approximation in figure 12. The vertical wavenumber spectrum occupies
a narrower range of scales than the horizontal, but has greater energy (since the two
curves must integrate to the same amount of energy, this relationship is expected). At
the small scales, the curves meet, indicating the very smallest scales are approximately
isotropic in energy.

The evolution of the vertical wavenumber spectra is very similar to that found
in horizontal spectra (see Rohr et al. 1988 or Piccirillo & Van Atta 1997). Spectral
evolution for three cases, Rig = 0.015, 0.095, 0.5 is shown in figure 13. For low Rig , the
energy in the large scales increases, resulting in a slow increase in energy in the small
scales. At high Rig , the energy in the large scales decays continuously, and therefore,
without a source of energy, the small scales decay.

To study the total small-scale anisotropy, the ratio of the vertical mean square fluc-
tuating temperature gradient to the streamwise mean square fluctuating temperature
gradient is plotted in figure 14. The curves are separated into two cases, corresponding
to low or high Rig . In figure 14(a), the ratio is plotted against τS =

∫ x
0

(S(x′)/U(x′))dx′,
a non-dimensionalized time. The ratio, r = (∂θ/∂z)2/(∂θ/∂x)2, begins near a value
of 1.0, grows to a maximum of around 2.0, at τS ≈ 8, and subsequently decays.
In contrast, figure 14(b) shows r for the most stratified cases, plotted against
τN =

∫ x
0

(N(x′)/U(x′))dx′. For these cases, r also begins near 1.0, but grows continu-
ously, reaching values of about 3.0. The results can be compared to the measurements
of r in Thoroddsen & Van Atta (1996) in unsheared, stratified turbulence using
two-point methods. Thoroddsen & Van Atta found a continuous increase in r, as in
figure 14(b), but their magnitude of r is only about 2.0 for similar evolution times.

3.6. Thorpe scales

A quantification of the size of unstable regions is made possible using Thorpe sorting,
and calculating Thorpe scales (see Dillon 1982). A Thorpe displacement is defined
relative to a stable profile, which in this case is defined as the profile found by sorting
the instantaneous temperature profile. According to Dillon, this is the profile which
would result if the temperature field was allowed to adiabatically settle back to a
stable profile. The stable profile is found by a bubble sort method. The displacement,
δ, is the distance a parcel must be moved to obtain the stable profile. One example of
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Figure 13. Spectral evolution for three different cases of Rig . As in the case of horizontal wavenum-
ber spectra, at low Rig , energy increases in large scales and small scales. For large Rig , energy
decreases in large scales, which accelerates decay of energy in small scales. (a) Rig = 0.015; (b)
Rig = 0.095; (c) Rig = 0.5.
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Figure 14. The ratio r is plotted for all the cases. To emphasize the different controlling properties,
the plots are split into low Rig , using ‘St’ scaling, and high Rig using ‘Nt’ scaling. (a) low Rig; (b)
high Rig .

a vertical profile, its sorted profile, and the resulting Thorpe displacements is shown
in figure 15.

The Thorpe scale, LTh, is calculated as the root mean square displacement over all
N profiles and Mi non-zero displacements in each profile,

LTh =

[
1

N

N∑
i=1

1

Mi

Mi∑
j=1

δ2
j

]1/2

. (3.5)
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Figure 16. Evolution of the LTh for all cases. The partial collapse as a function of St implies the
initial growth is controlled by shear.

This definition is different from previous definitions, especially compared to that of
Itsweire (1984) and Itsweire et al. (1993), in which LTh is calculated as a vertical
average over all values, even zero values. As we are interested in the size of unstable
regions, we do not average over zero displacements, since those are by definition
regions of stability. LTh is thus a measure of the size of unstable regions only. In
contrast, the Thorpe scale defined by Itsweire et al. is a measure of the average length
of instability over the whole vertical profile.

Figure 16 shows the evolution of LTh for each case. For early evolution times, the
growth of LTh is approximately the same for all cases. A visible collapse of the curves
indicates that shear effects control this initial growth. For further evolution times at
low Rig , LTh increases throughout the evolution, indicating that the size of unstable
regions continues to increase. For increasing stability, the rate of growth is less. For
the most stable cases, Rig = 0.25, 0.5, the lengthscale initially increases to maximum,
decays slightly, but then remains roughly constant. Further evolution time in the most
stratified cases might show a final decay in LTh, when overturns cease to exist, but
that cannot be evaluated here.
LTh is compared to the overturn scale, Lt = (θ2/S2

T )1/2 in a similar manner to
Itsweire et al., by plotting LTh versus Lt in figure 17(a). For low Rig , the points
generally line up parallel to the reference line (with slope equal to one). As Rig
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Figure 17. A comparison of LTh, L
∗
Th, and Lt. The straight line through both plots has slope equal

to 1. (a) LTh versus Lt; (b) L∗Th versus Lt (similar to Itsweire et al.). In (b), L∗Th is approximately
proportional to Lt for all the data, whereas in (a), the LTh increases relative to Lt for smaller values
of Lt.

increases, and with flow evolution, Lt decays relative to LTh such that the overall
curve crosses the reference line, indicating that the average isopycnal displacement
is decaying faster than the scale of the overturns. To compare our results to those
of Itsweire et al., we have also plotted L∗Th, a Thorpe scale computed by averaging
over all displacements, versus Lt, in figure 17(b). This plot is similar to their figure
2, showing an approximate constant proportionality between L∗Th and Lt. It does not
show an eventual decay of L∗Th relative to Lt.

Taking figures 16 and 17 together, a physical interpretation of these results is that
even though the total energy of the field is decaying, the size of unstable regions
is not decaying as quickly. Therefore, even though the overturns are not becoming
smaller, there are fewer and fewer overturns. This is supported by the results below
for available potential energy.

The probability density function (PDF) of Thorpe displacements is shown in figure
18. The figure shows obvious exponential tails, and implies that the Thorpe scale can
be interpreted as a measure of the slope of the tails. This result can be compared to
PDFs of temperature, since the instantaneous temperature is directly dependent on
these displacements. The statistics of θ can range from Gaussian to non-Gaussian
depending on the microscale Reynolds number of the turbulence and size of the
domain relative to the integral lengthscale (Warhaft 2000). The difference between
fluctuations defined around the local stable profile and fluctuations defined around
the mean are investigated by a new decomposition which uses the local background
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Figure 18. PDF of Thorpe displacements at x/M = 30, Rig = 0.015. Exponential tails of the PDF
indicate the Thorpe scale is a measure of the slope of the tails.

temperature profile, Tb. The decomposition is as follows:

θ = T − T̄ , (3.6)

θ1 = T − Tb, (3.7)

θ2 = Tb − T̄ , (3.8)

θ = θ1 + θ2. (3.9)

Thus, θ, defined relative to the mean, is split into a part associated with the Thorpe
displacement, θ1, and a part associated with stable fluctuations, θ2. The contributions
to θ2 by θ1 and θ2 are shown in figure 19 where it is obvious that most of the
energy in θ is contained in stable fluctuations associated with the background density
profile. This result implies then that overturn scales, defined as Lt = (θ2/S2

T )1/2, are
primarily a measure of the height of stable displacements of isopycnals. θ1 is directly
related to the Thorpe displacement. That the correlation between θ1 and θ2 is low
(the normalized correlation is about 0.1) implies that Thorpe scales and overturn
scales are not strongly related. These results hold for all of the cases studied here.
The probability density functions of θ, θ1 and θ2 are shown in figure 20. In sharp
contrast, the PDF of θ1 has exponential tails, whereas the PDF of θ and θ2 are
Gaussian. Since the contribution to θ2 is primarily due to θ2, the Gaussian PDF
of θ is the same as the PDF of θ2. The difference in these PDFs is similar to the
result found in Christie & Domaradzki (1994) for thermal turbulence where the
fluctuations associated with large scales were Gaussian but fluctuations associated
with small scales were exponential. In this case, it might be interpreted that the stable
fluctuations are wavelike, and therefore are associated with larger scales.

3.7. Available potential energy

The available potential energy per unit mass is defined as

APE =
1

ρol

∫ l

0

g(ρ(z)− ρ∗(z))zdz (3.10)

which can be found in Dillon (1984), Winters et al. (1995), and others. ρo is the average
density over the interval of length l and ρ∗(z) is the sorted density profile as defined
above. Temperature is converted to density using the perfect gas law. The mean APE
is found as the average value of (3.10) over all the vertical profiles. The evolution

of the ratio of APE to the background potential energy Pb = (1/ρol)
∫ l

0
gρ∗(z)zdz is
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Figure 21. Ratio of APE to Pb for all cases. Pb changes very little through evolution, so these
curves represent primarily the evolution of APE.

shown in figure 21 which shows that the APE� Pb and that APE grows and decays
according to the stability based on Rig .

The ratios APE/KE and APE/PE are shown in figure 22. The absolute magnitude
of APE depends on the length of the integral, l, since the integral is nonlinear in
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Figure 22. Ratio of APE to KE and PE. For low Rig , APE increases relative to both KE and PE,
indicating more energy is associated with overturn regions. For high Rig , APE decays toward zero
relative to KE and PE, indicating fewer overturns are occurring.

z. To ensure the ratios for different cases are comparable, the integration length for
every measurement is 10 cm. Compared to KE,APE always increases initially, but
subsequent evolution depends on Rig , where for low Rig , the ratio continues to grow,
but for high Rig the ratio can fall quickly. The ratio APE evolves monotonically in
every case, where the ratio increases for low Rig but decays for high Rig . These results
show that the proportion of energy associated with unstable regions varies relative
to both the kinetic energy and the potential energy. In some sense, these energies
can be considered independent types of energy. The result implies the approximation
used by Dillon (1984) to equate PE with APE is not correct, since the two quantities
evolve at different rates and, in this study, APE� PE.

3.8. Diapycnal flux

The diapycnal flux is defined by Winters et al. (1995) as the flux across isopycnal
surfaces which results in irreversible mixing. This irreversible mixing increases the
background potential energy, defined as the minimum potential energy which a volume
can take by adiabatic reordering. The change in background potential energy is best
understood as the difference in potential energy of a volume before mixing begins
and after mixing has totally died away. Winters et al. show that the instantaneous
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diapycnal flux of buoyancy per unit mass, φd, can be written as

φd = κ
g

T̄o

|∇T |2
(dT/dz∗)

, (3.11)

where some constants are used to convert a diapycnal flux of T to a flux of buoyancy
per unit mass. dT/dz∗ is the local gradient of the sorted, stable profile and |∇T |2 is
the total squared temperature gradient. As discussed by Winters & D’Asaro (1996)
and Winters et al. (1995), the diapycnal flux is the molecular mixing across isopycnal
surfaces. This flux is across surfaces which are contorted, thereby increasing the
effective amount of surface across which diffusion occurs. A fundamental role of
turbulence is to both create more surface area and to create local high-gradient
regions. Both of these mechanisms enhance the rate of molecular mixing as compared
to the diffusion by molecular mixing of the mean gradient. For the present flow
conditions, where the flow is homogenous in the y and z directions, an equation
relating average buoyancy flux, diapycnal flux and available potential energy can be
derived from equation (19) in Winters et al. (1995). By taking the expectation of that
equation, and noting that the flux in homogeneous directions is equal into and out
of the volume, the equation for the evolution of available potential energy can be
reduced to:

U
dAPE

dx
= B − φd + φi, (3.12)

U

B

dAPE

dx
= 1− (φd − φi)

B
, (3.13)

where all the terms are average quantities and φi = (g/T̄o)κST is the mean molecular
flux of buoyancy. Non-dimensionalizing the equation with the buoyancy flux, it is
seen that the ratio (φd−φi)/B determines whether or not APE grows or decays. Since
φd incorporates the mean molecular flux, the difference φd−φi is the effective rate at
which APE decreases owing to molecular mixing.

The diapycnal flux can be estimated from the vertical profiles of temperature using
the vertical density gradients and sorted profiles of density along a line measurement.
The original formulation of Winters et al. (1995) assumes that the background density
gradient is based on a reordering of a volume, instead of a line. It is not clear what
effect this difference has on the results. φd is calculated by computing (3.11) in
each profile at each point by calculating local density gradients using 6th-order
finite differences on both the original profile and the sorted profile. The quantity
(∂T/∂z)2/dT/dz∗ is averaged over all points in the central 10 cm of the flow and
averaged over all of the profiles. An equivalent average can be obtained by averaging
over isotemperature values in the core of the flow over all the profiles and then
averaging over a range of temperatures in the homogeneous core, following the
scheme outlined in Winters & D’Asaro (1996). As all the components of the gradient
of temperature are not available, the flux is corrected using the measured ratio
of the streamwise and vertical mean square fluctuating temperature gradients. The
spanwise (y-direction) mean square fluctuating temperature gradient is estimated as
the average between the streamwise and the vertical mean square gradients. The form
of this correction can be found in the Appendix.

A plot of the ratio (φd − φi)/B versus streamwise distance is shown in figure 23.
For all of the cases, (φd−φi)/B > 1, indicating APE should decay for all cases, which
does not match up with figure 21 which shows APE growing for Rig 6 0.095. It is
not clear that the growth rates of APE (positive and negative) do not match with
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Figure 23. The ratio of diapycnal flux minus mean molecular flux to buoyancy flux. For most
cases, the ratio is about 1.5 through the evolution. For Rig = 0.25, 0.5, the ratio is much larger, and
evolves to a maximum before decaying.

the expected growth rates from the calculation of (φd−φi)/B. One possible reason is
that defining the stable density profile by reordering a line measurement may not be
exactly equivalent to the stable density profile obtained by reordering a volume. Also,
it was found that the instantaneous value of φd at a point was very intermittent owing
to the occasional small value of the stable gradient in the denominator, producing
spikes in the data.

Considering figure 23 alone, the results show that the ratio is greatest for Rig > 0.25.
For Rig = 0.25, 0.5, the flux ratio initially grows to a maximum and then decays and
the ratio is greatest for Rig = 0.25. For Rig 6 0.25, the flux ratio is almost constant
throughout the evolution, with some scatter in the data. The strong increase in the flux
ratio for Rig = 0.25, 0.5 illustrates how, for these cases, the buoyancy flux collapses
at a faster rate than diapycnal flux. Therefore, when buoyancy flux has decayed to
a negligible value, diapycnal flux can still persist, by acting on the almost fossilized
temperature structure, thereby changing the background potential energy. In other
words, in the absence of buoyancy flux, diapycnal mixing still occurs because the
temperature structure still contains high-gradient regions and convoluted surfaces
which enable molecular mixing to occur at a greater rate than the mean molecular
mixing rate.

The diapycnal flux is also compared to the mean molecular flux in the form of a
Cox number, where Cod = φd/((g/T̄o)κST ). The evolution of Cod is shown in figure
24. As expected for these types of flow, Cod increases from 8 to 20 for the least
stratified case. As stratification is increased, Cod grows less strongly. For Rig > 0.135,
the Cod decays throughout the evolution. For the most stratified case, Rig = 0.5, Cod
decays to a value just larger than 1, indicating the flux at the last measurement station
is mostly due to the mean molecular flux.

It makes sense that the flux ratio would have its greatest value at Rig = 0.25, which
is similar to other results showing the flux Richardson number, Rf = B/(B + ε),
having a maximum at Rig = 0.25 (Holt et al. 1992). For both the flux ratio in figure
23, and Rf , increasing the temperature gradient, for fixed mean shear rate, increases
the buoyancy flux but also decreases the shear production of turbulent kinetic energy,
which subsequently reduces the buoyancy flux. Thus, there is a competition between
the kinematic effect due to increasing the temperature gradient and the dynamic effect
of increasing the temperature gradient, which increases the stabilizing effects of gravity.



24 K. H. Keller and C. W. Van Atta

20

15

10

5

0
20

Cod

Rig = 0.015

0.055

0.095

x/M
40 60 80 100 120 140 160 180

Rig = 0.135

0.250

0.500

Figure 24. The evolution of Cod for all the cases. The rapid rise of Cod for low Rig is evidence for
turbulent mixing increasing the effective diapycnal flux of buoyancy. For increasing stratification,
Cod decays toward a value of 1.0, showing that at the final stage, diapycnal flux is due primarily to
mean molecular flux.

Staquet (2000) suggest that the flux Richardson number, usually defined as Rf =
B/(B+ε), where B is the buoyancy flux and ε is the dissipation rate of kinetic energy,
be defined instead as R∗f = (φd−φi)/(φd−φi + ε). We compare the two definitions of
Rf in figure 25. The shapes of the curves for the two definitions are very close, but
R∗f reaches higher values than Rf . R

∗
f evolves to a value of about 0.5 for Rig > 0.135.

4. Discussion
4.1. Shear distortion and creation of small vertical scales

The ratio of the mean square fluctuating temperature gradients shown in figure 14(a)
illustrates how for high shear rates relative to the reciprocal of the turbulent turnover
time scale, small vertical scales are generated compared to horizontal. That the initial
rise to a maximum in the ratio of mean square gradients is associated with shear
is seen by similar evolution of the three cases for which each has a different shear
rate. The maximum occurs at a non-dimensional evolution time of τS = 8 which is
approximately when self-similar, exponential evolution begins. Thus, the increase in
energy at small vertical scales is a linear effect of distortion by mean vertical shear.
Salmon (1998) illustrates this concept by solving for the evolution of mean square
scalar gradients under the action of shear and molecular diffusivity. It is shown that
the vertical shear transfers energy from large vertical scale to smaller vertical scales,
while the energy in the horizontal scales is unaffected. This result is directly applicable
to a turbulent field, and is one of the results from rapid distortion theory discussed
in Hunt & Carruthers (1990). The subsequent decay of r for further evolution can be
explained by the increasing intensity of mixing, such that the turbulent timescale is
decreasing relative to the shear timescale. Therefore, turbulent mixing is redistributing
the energy more efficiently before shear can effect the structure.

For high Rig , r increases continuously. The rate of this increase and the final values
are significantly greater than that found for measurements in unsheared, stratified
turbulence by Thoroddsen & Van Atta (1996). This increased rate of growth of r
could be due to the combined effects of shear and stratification creating small-scale
anisotropy. Since stratification effects damp out the turbulence shear production (Rohr
et al. 1988), the shear only distorts the turbulence and does not promote its isotropy by
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Figure 25. Two definitions of the flux Richardson number are compared. (a) R∗f versus x/M; (b)

Rf versus x/M. R∗f shows a greater mixing efficiency than the buoyancy flux, but the overall shape
is similar.

transferring energy into the turbulence. At the same time, high stratification increases
the ratio by directly suppressing the vertical lengthscale of mixing.

4.2. Waves versus turbulence

The rake visualizations in figure 7 and the value of the Cox numbers in figure 24
for high Rig imply that the flow is wavelike. An additional factor which supports
this conclusion is a measured negative Reynolds stress, implying a transfer of energy
from KE to the mean flow. A conclusive measurement of waves cannot be made
without time–space measurements in which a line of constant phase can be tracked
through space. For this flow, the phase speeds are much less than the mean velocity,
and therefore a wave is approximately frozen as it is measured. Furthermore, a
wave which was emitted somewhere upstream in the flow probably cannot have
even propagated through one phase, since the minimum period for a wave would be
2π/N, which is about 3 s, compared to the travel time in this flow which is about
2 s. A more viable interpretation of the flow measured at these stations is as bobbing
lumps of fluid which presumably emit internal waves. This type of phenomenology is
similar to that described by Gerz, Schumann & Elghobashi (1989) and Komori et al.
(1983) as bobbing fluid parcels, interspersed with both down gradient mixing events
and counter-gradient restratification events. In terms of a fixed-point measurement,
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a bobbing fluid element would be at a random stage in its evolution, possibly rising,
falling, or perfectly still, when the fluid element was measured. In the context of the
presently defined mean shear flow, in which dŪ/dz < 0, a rising lump would have
a positive velocity and a negative temperature fluctuation. The streamwise velocity
fluctuation u is consistently measured to be negative for times when w is positive, or
vice versa (i.e. uw < 0). This implies that the lump is pushed slightly back relative to
the local mean flow for rising lumps, or pushed forward for falling lumps. A possible
reason for this is that a local pressure gradient develops owing to the convergence of
density at the front of a rising lump or at the rear of a falling lump.

A picture of the flow can be constructed. Bobbing lumps rise up and down in the
flow. For a large enough vertical rise, the lump can be pushed out over (under) fluid
of lower (higher) density, thus creating a statically unstable patch. The vertical size
of these patches is limited, as seen in the measurements of Thorpe scales. A possible
mechanism for limiting this size is a viscous cutoff, similar to the cutoff for instabiliy
of internal waves approaching a critical layer (see Baines 1995). In this case the
bobbing lumps must be far enough from equilibrium for the local pressure gradients
to act significantly in pushing the lumps forward or backward. For lumps that are
not high (or low) enough, viscous effects keep overturns from occurring.

5. Conclusions
The vertical structure of the temperature field of homogeneous stratified shear

turbulence has been studied using approximately instantaneous vertical profiles of
temperature, supplemented with vertical rake measurements of temperature and stan-
dard fixed-point measurements of velocity and temperature. Vertical profiles contain
unique information which is not available in standard fixed-point measurements.
From the vertical profiles, measurements of Thorpe scales, available potential energy,
and vertical wavenumber spectra were calculated and compared to other measured
quantities.

It is found that the temperature structure of low Rig is strongly controlled by
mean shear and the appearance of high-gradient regions generated by advective
flux. Mean shear causes distortion of the vertical temperature structure to generate
smaller vertical scales. Vertical advection generates both high stable gradients and
local unstable regions. For high Rig , the temperature structure is modified primarily
by the effects of stratification restraining vertical motions, but also by shear distortion.
This enhances the development of small vertical scales which persist as the turbulence
decays.

It is found that the size of unstable regions, as measured by the Thorpe scale
defined by (3.5), decays to some minimum value for the most stratified cases. This
minimum value could be related to a viscous cutoff similar to the cutoff for instability
in critical layers. It would be interesting to see at what value of τS this lengthscale
finally goes to zero, indicating no overturns were measured.

The vertical profiles have been analysed in terms of available potential energy
and diapycnal flux. In this framework, fluctuations of the temperature field are
compared to the background stable temperature profile. It was found that most of
the temperature variability compared to the mean is comprised of stable fluctuations.
Therefore, available potential energy, associated only with the unstable fluctuations
and turbulent potential energy, defined relative to the mean field, are not strongly
correlated, and represent different physical quantities. Further, it was also found that
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the stable fluctuations have a Gaussian probability distribution, whereas the unstable
fluctuations have a probability distribution with exponential tails.

The diapycnal flux has been compared to the buoyancy flux as the representative
rate of mixing in the mean. Though the present results are incomplete, it is clear
that diapycnal flux greater than the mean molecular flux can persist while buoyancy
flux has collapsed, since enhanced diapycnal flux only requires the existence of scalar
fluctuations. It is interesting to note then that fossil turbulence, in which the flow
is comprised of only temperature (or density) fluctuations but no turbulent kinetic
energy, can also have a diapycnal flux that is greater than the mean molecular flux,
even though there is no turbulent mixing.

The present results show that vertical profiles and the framework of background
potential energy (Winters et al. 1995) can provide additional information about the
mixing and structure of the turbulence. Additional investigations are required to
validate the balance of energy in equation (3.13) and to understand how diapycnal
flux is related to the mean temperature profile evolution.

This work was funded by the Office of Naval Research, Small Scale Physical
Oceanography, contract number N000149094-1-0233 and by National Science Foun-
dation Physical Oceanography Grant number OCE 98-71857. We are also indebted to
the reviewers for carefully reading our manuscript and making valuable suggestions
for its improvement.

Appendix. Correction for diapycnal flux
The diapycnal flux as measured from vertical temperature profiles cannot account

for contributions to flux from the spanwise and streamwise directions, since only
vertical gradients are measured. In the present investigation, we obtain measurements
of (

(∂T/∂z)2

dT/dz∗

)
(A 1)

instead of ( |∇T |2
dT/dz∗

)
. (A 2)

where the overbar indicates the expected value and T = θ− T̄ , the total temperature.
To relate (A 1) to (A 2), we make the approximation( |∇T |2
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The measured ratio r = (∂θ/∂z)2/(∂θ/∂x)2 relates the streamwise and vertical mean

square gradients, and the spanwise mean square gradient (∂θ/∂y)2 is approximated
as the average of the vertical and streamwise mean square gradients. Thus,
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An approximation similar to (A 3) relates the mean square vertical temperature
gradient with (A 1): (
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Taking (A 4, A 6, and A 8), and solving for (A 2) in terms of (A 1) gives( |∇T |2
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